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Abstract
The generating functions of models of directed walks pulled by an external
force f are determined using the kernel method. These paths are models of
linear polymers subject to an external force. The generating function is related
to the generating function of ballot paths, and has an unexpected and non-
physical singularity for the model of Dyck paths pulled at its central vertex. In
each model the force–extension curve is determined exactly, and has a sigmoid
shape partially given by C tanh(cf ) if f is the applied force and where c and
C are the model-dependent constants. This result is consistent with previous
results for models of pulled directed paths, and also with data obtained from
the numerical simulation of self-avoiding walk models of linear polymers.

PACS numbers: 02.10.Ox, 05.50.+q, 64.60.De, 64.70.km
Mathematics Subject Classification: 82B41, 05A15

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The experimental phenomenon of forced-induced polymer localization and delocalization has
seen renewed interest in recent years [16, 17, 25] and this has in turn spawned a renewed
activity in the theoretical modelling of polymer adsorption under externally applied forces.
For example, numerical studies in [22, 23, 26] examine the behaviour of self-avoiding walk
models of polymers pulled by externally applied forces, while directed path and partial directed
path models were analysed in [1, 3, 27, 28].

Directed lattice paths have long served as models of polymer entropy [11, 32]. These
models are in many cases exactly solvable so that the singular nature of limiting free energies
and the structure of phase diagrams can be exactly calculated (see for example [10]). These
models have also been used to explore a variety of polymer phenomena; for example directed
path models are examined in [6, 14, 19, 20, 29], while Motzkin path models of polymer
adsorption and collapse were analysed in [4]. Examples of models of directed vesicles or
directed lattice polygons can be found in [5].
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Figure 1. Two models of adsorbing directed paths pulled by an external force. On the left-hand
side a path fixed at its first vertex is pulled away from the adsorbing line by an externally applied
force at its last vertex. On the right-hand side is a Dyck path with both endpoints fixed being pulled
away from the adsorbing line by an externally applied force averaged over the entire path. In both
these models the visits of the path are weighted by a parameter z; for large values of z the paths
are adsorbed, and for small values of z it is desorbed. These models were considered in [27, 28],
where it was shown that there are adsorption–desorption transitions due to the parameter z and a
ballistic phase for large (pulling) values of the external force. In [1] the elastic response of these
paths was examined by the calculation of force–extension curves. For z = 1 the paths are in the
desorbed phase, and this is the situation which is considered here.

Directed path models of a polymer pinned at an interface and pulled by optical tweezers
(see reference [12]) were examined in [27], and were further generalized in [1] by examining
force–extension relations for models of adsorbing Dyck paths and partially directed paths [3].
In particular, the generating functions and force–extension curves were determined for the
models in figure 1 in [1, 27].

The models in figure 1 are of directed paths in the positive half-space Y � 0 and adsorbing
onto the boundary Y = 0 with the interaction parameter z. These are adsorbing directed paths
[14]: on the left a model of a directed path with first vertex fixed in the horizontal line and with
an external force f applied vertically on the last vertex is illustrated. The path has a length n
and the number of visits it makes to the horizontal line is v while height of its final vertex is
h. The generating function of the model is [27, 28]

H(z, f, t) =
∑
n,v,h

cn(v, h)tnzv ehf

= 4t

(2 − z(z − √
1 − 4t2))(2t − ef (1 − √

1 − 4t2))
, (1)

where cn(v, h) is the number of paths of length n, with v visits in the adsorbing line and
final vertex at height h. The generating variable t generates edges, z generates visits and the
external force f is conjugate to the height h.

The model on the right-hand side in figure 1 is more interesting. The external force f is
not applied at a given central vertex in the path, but it is instead averaged over vertices along
the entire path. The generating function of such stitched Dyck Paths was obtained in [1], and
is given by

S(z, f, t) = 16t2

((2 − z(1 − √
1 − 4t2))2(4t2 − ef (1 − √

1 − 4t2)2)
. (2)

This generating function was obtained by finding a second-order functional recurrence which
can be explicitly solved.

If the force in the model on the right in figure 1 is applied at a particular vertex (say at the
middle vertex), then it becomes far more difficult to determine the generating function. In this
paper, I consider this particular situation for a Dyck path pulled in the middle, as illustrated in
figure 2. I shall simplify the model by putting the adsorption parameter z = 1. The generating
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Figure 2. A Dyck path pulled at its central vertex by an external force f . Positive values of
f correspond to forces acting vertically up. Negative values of f correspond to forces acting
vertically down. For positive values of f , the central vertex is pulled away from the boundary,
while it is pushed into the boundary if f is negative.
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Figure 3. A directed path with fixed endpoints pulled by a force f at its central vertex. Positive
values of f correspond to forces acting vertically up. Negative values of f correspond to forces
acting vertically down.

function will be determined by a constant term formulation of a more general model, which I
shall solve using the obstinate kernel method [2, 13].

A simpler implementation of this approach is demonstrated first on the model of a directed
path pulled in the middle, and illustrated in figure 3. In this model both endpoints of the path
are fixed in the line Y = 0, and the path is pulled by an external force f in the middle. For
positive values of f the path is pulled up, and for negative values it is pulled down.

The generating function of the model in figure 3 has an intimate relation with Legendre
polynomials, and I show in particular that it is given by

g0(t; f ) = 1√
1 − 4t2 cosh f + 4t4 sinh2 f

. (3)

An additional result is a proof of the following combinatorial identity:

∞∑
n=0

⎡
⎣ n∑

j=0

(
n

j

)2

aj

⎤
⎦ bn = 1√

1 − 2b (a + 1) + b2 (a − 1)2
. (4)

The method of proof is via a constant term formulation of the generating function of the paths
in figure 3. The selection of the constant term gives the generating function g0(t, f ) as a series
over Legendre polynomials from which the identity follows.

3



J. Phys. A: Math. Theor. 43 (2010) 215001 E J Janse van Rensburg

The radius of convergence tc of the generating function g0(t, f ) in the t-plane defines the
limiting free energy per edge of the path. This is given by

F0(f ) = log[2 cosh(f/2)]. (5)

The mean extension (or height) of the midpoint of the path per unit length is given by
〈h〉 = dF0(f )

df
= [tanh(f/2)]/2. This should be compared with equation (6) in [1] for the

force–extension curve of a single path pulled at its end point; inverting that equation for T = 1
(below the critical adsorption temperature) gives 〈h〉 = (e2f − 1)/(e2f + 1) = tanh(f ).

The presence of a hard wall in the model in figure 2 poses significantly more difficult
challenges. Let G(Z; f ) be the generating function of these paths, with Z conjugate to the
visit of the central vertex (where the force is applied) to the hard wall.

If the generating function G(Z; f ) is generalized so that G(1; f ) is the constant term
of the generating function of a more general model of pairs of directed paths, then G(Z; f )

can be determined using the obstinate kernel method. This generalized formulation gives a
generating function which satisfies an algebraic recurrence, and selection of the constant term
gives the following theorem.

Theorem 1. If α is any root of the quadratic polynomial in a:

a − t2(a + e−f )(a + ef ) = 0, (6)

and the function F0(y) is given by

F0(y) = ef y2

t2

(
1

4
− 1

2π
E(4t2)

)

+ t2(ef y2 − 1)

∞∑
j=1

j−1∑
k=0

1

j + 1

(
2j

j

)(
2j + 1

k

)
(ef y2)j−kt4j , (7)

where E(a) is a complete elliptic integral of the second kind, then the generating function
G(1; f ) is formally given by

G(1; f ) = F0(
√

α) − F0(
√

1/α)

ef t2(α − 1/α)
(8)

for values of t within a circle in the complex t-plane determined by the radius of convergence
of F0(

√
α) and F0(

√
1/α).

This result should be compared to the generating function of pulled Dyck paths (with
z = 1) in equation (2), and the roots α in theorem 1 are related to the singularities of the
generating function g0(t; f ) in equation (3).

A corollary of the above is the following combinatorial identity involving Catalan
numbers: this identity arises when the function F0(y) is given a complex argument.

Theorem 2. If Cn is the n-Catalan number, then
∞∑

n=0

C2
na

n = E(4
√

a)

πa
− (1 − 16a)K(4

√
a)

2πa
− 1

4a
,

where K(a) and E(a) are complete elliptic integrals of the first and second kind, respectively.
In particular, it is the case that F0(ie−f/2) = −t2 ∑∞

n=0 C2
nt

2n.

The limiting free energy per edge in this model can also be determined from the above; it
is given by

F(f ) =
{

log 2, if f < 0;
log[2 cosh(f/2)], if f � 0.

(9)

4



J. Phys. A: Math. Theor. 43 (2010) 215001 E J Janse van Rensburg

•............................................................................................................................................................................................................................................................................................................

...........
...........
...........
..............

...........
...........
..............

...........
...........
..............

...........
...........
..............

...........
...........
..............

...........
...........
..............

...........
...........
..............

...........
...........
..............

...........
...........
..............

...........
...........
..............

...........
...........
..............

...........
...........
...

...........
...........
...........
...........
...........
...........
............
...........
...........
..................................................................................................................................................... ............

...........
...........
.. .............................................................................................................................................. ............

...........
...........
...........
...........
...........
.... .................................... ............

...........
...........
...........
...........
...........
....O
........
........
........
........
........
........
........
........
........
.... ..............
..............

f•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

...

Figure 4. A directed path pulled vertically at its last vertex. The force–extension curve in this
model is 〈h〉 = tanh f , where 〈h〉 is the average height of the last vertex from the X-axis. The
elastic response of this path is given by R(f ) = f/ tanh f so that |R(f )| � 1 for all f and
|R(f )| ∼ |f | asymptotically.

This shows that F(f ) is singular when f = 0, separating a phase of paths with positive mean
extension per edge for f > 0 given by 〈h〉 = dF(f )

df
= [tanh(f/2)]/2 from a phase with zero

mean extension per edge when f � 0. This signals a phase transition at the critical value
fc = 0 of the applied force to a ballistic phase for the forces f > 0.

Observe that if T = 1 in equation (16) in [1], then inverting the equation gives
〈h〉 = [tanh(f/2)]/2 for f > 0. In other words, pulling the path at its middle vertex (as in
this paper), or pulling it from an averaged position (as in [1]) gives the same force–extension
curves.

The model in figure 2 is related to models of osculating paths and vicious paths
[8, 9, 30, 31], and also to models of staircase polygons [5] and random walks in the quarter
plane [13]. Our approach will be similar to the method for three osculating walkers in [9].

Both the models in figures 2 and 3 are already solved in the sense that the number of
paths, in each case, can be written down using binomial coefficients. For example, the number
of paths in the model in figure 2 can be determined from either equation (2.1) in [21], or
equation (4.156) in [19]. Directly computing the generating function from these expressions,
using computer algebra packages (for example Maple 12 [24]) produces a series over
generalized hypergeometric functions about which little is apparently known.

It is remarkable that the expressions for the limiting free energies obtained above are
similar to those for the free energy of directed paths with north-east and south-east steps from
the origin of the lattice, and pulled in a vertical direction by the last vertex. This model is
illustrated in figure 4 and the number of such paths of length n ending at height h above the
X-axis is given by the binomial coefficient

cn(h) =
(

n
n+h

2

)
. (10)

Observe that there is a parity effect, if n is even, then h must be even, and if n is odd, then h is
odd. Thus, the partition function can be found directly:

Zn(f ) =
∑

h

cn(h) ef h = (ef + e−f )n. (11)

5
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Figure 5. Two directed paths starting in the opposite boundaries and stepping towards the line
midway between the boundaries. The paths terminate when they step onto the halfway line between
the boundaries. The heights of the endpoints of the walks in the halfway line are generated by the
variables y1 and y2. Paths in the model in figure 3 are generated in this model when the endpoints
of the two paths meet on the halfway line—in the generating function this will correspond to the
selection of constant term.

The generating function of this model can be explicitly computed to be

G(t, f ) =
∑

n

∑
h

cn(h) ef htn = 1

1 − 2t cosh f
, (12)

and the result is that the limiting free energy per vertex is given by

F(f ) = log[2 cosh f ]. (13)

This shows that F is analytic in f and the force–extension curve of the path is given by
〈h〉 = tanh f . The elastic response of the path is defined by R(f ) = f/ tanh f and note that
R(0) = 1 and R(f ) � 1 for all f and that |R(f )| ∼ |f | asymptotically.

I conclude the paper with a few final comments in section 4.

2. A directed path pulled in the middle

In this section, I show how to use a constant term formulation to determine the generating
function of the model in figure 3. Note that the pair of paths have a combined even length 2n

and the number of paths with the middle vertex at height h = 2j − n from the X-axis is given
by cn(2j − n) = (

n

j

)2
. In other words, this is the number of pairs of directed paths from the

origin of length n both ending at height 2j − n.
I shall now determine the generating function of this model by selecting the constant term

of a more general generating function. Consider instead the model in figure 5 of two paths
with free endpoints starting in the walls of the slit and stepping towards the middle. North-east
and south-east steps in the first path are generated by t and vertical displacement from the
horizontal line by y1.

Similarly, north-west and south-west steps in the second path are generated by s and
vertical displacement from the horizontal line is generated by y2.

The generating function h(y1, y2) of the (combined) pairs of paths in figure 5 satisfy the
recurrence relation given by

h(y1, y2) = 1 + (ty1 + t/y1)(sy2 + s/y2)h(y1, y2), (14)

so that h(y1, y2) is either the set of trivial paths composed of one vertex each, or is a pair
of paths obtained by appending a single edge to the paths generated by h(y1, y2): the factor
(ty1 + t/y1) appends a north-east edge (ty1) or a south-east edge (t/y1) to the path on the left,

6
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while (sy2 + s/y2) appends a north-west edge (sy2) or a south-west edge (s/y2) to the path on
the right.

If h(y1, y2) is known, then the generating function of the model in figure 3 can be
determined by putting y1 = ef/2y and y2 = ef/2/y and then determining the constant term
(CT—this is the term independent of y) of h(ef/2y, ef/2/y).

In other words, the generating function of the model in figure 3 is given by

g0(s, t; f ) = CT[h(ef/2y, ef/2/y)], (15)

where CT is an operator which selects the terms independent of y in h(ef/2y, ef/2/y).
Proceed by solving for h in equation (14). Substituting y1 = ef/2y and y2 = ef/2/y then

gives the expression

h(ef/2y, ef/2/y) =
∞∑

n=0

(ef + y2 + y−2 + e−f )nT n, (16)

where T = st .
Factor the coefficient of T n in the above as follows:

(ef + y2 + y−2 + e−f )n = y−2n(y2 + α+)
n(y2 + α−)n, (17)

where α+ and α− are determined from the roots of the quartic y4 + 2y2(ef + e−f ) + 1 in y and
is given by

α± = 1
2

√
(ef + e−f )2 − 4 ± 1

2 (ef + e−f ). (18)

Observe that

[α+α−] = 1, and [α+/α−] = e−2f . (19)

Expanding the powers in equation (17) and collecting the constant terms shows that

CT[(α+ + y2 + y−2 + α−)n] =
n∑

j=0

(
n

j

)(
n

n − j

)(√
α+

α−

)n−2j

= 2F1

(
[−n,−n], [1]; α−

α+

)(
α−
α+

)n

=
(√

α+

α−
−
√

α−
α+

)n

Pn

(
α+ + α−
α+ − α−

)
, (20)

where Pn(x) is the nth degree Legendre polynomial (see for example 8.916(5) in [15]).
Multiplying by T n = sntn and summing over n gives the complete generating function.

Put s = t in the expression for g0(s, t; f ) to see that

g0(t; f ) ≡ g0(t, t; f ) =
∞∑

n=0

⎡
⎣ n∑

j=0

(
n

j

)2

e(2j−n)f

⎤
⎦ t2n

=
∞∑

n=0

sinhn(−f ) Pn (coth(−f )) (2t2)n

= 1√
1 − 4t2 cosh(−f ) + 4t4 sinh2(−f )

; (21)

see for example 8.921 in [15] for the generating function of Legendre polynomials. This in
particular proves equation (4).

7
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Figure 6. Two directed paths in the half-space Y � 0 starting in the opposite boundaries and
stepping towards the line halfway between the vertical boundaries. The paths terminate when
they meet the halfway line between the boundaries. The heights of the endpoints of the paths
in the halfway line are generated by variables y1 and y2. The generating function of this model
is g(Z; y1, y2), where Z generates paths with both endpoints at height zero and in the horizontal
hard wall. Paths in the model in figure 2 are counted in this model when the endpoints of the two
paths meet on the halfway line—in the generating function this will correspond to the selection of
a constant term.

Determining the radius of convergence of g0(t; f ) shows that

t2
c = min

{
1

2

(
1

2(cosh(f ) ± 1)

)}
, (22)

where the minimum is taken over the sign. This finally gives the limiting free energy per edge
of the model:

F0(f ) = −log tc = log
√

2 (1 + cosh(f )) = log [2 cosh(f/2)] . (23)

The force–extension relation for this model is obtained by taking the first derivative to f ,
and is given by 〈h〉 = [tanh(f/2)]/2. This completes the proofs of the claims made in
equation (4) and in the introduction.

3. Dyck paths pulled in the middle

Next consider a model of Dyck Paths pulled in the middle. The approach followed here will
be similar to that of the previous section. The model is illustrated in figure 2, and as above the
path is cut into two independent paths of equal length (see figure 6) in its middle vertex.

In particular, I determine the generating function g(Z; y1, y2) of the model in figure 6,
where Z is a generating variable conjugate to pairs of paths with both endpoints in the boundary
or hard wall. The generating function G(Z; f ) of the model in figure 2 can then be determined
from the constant term (the term independent of y) in g(Z; ef/2y, ef/2/y), following the outline
of the method in the previous section.

Our basic approach is to write down a functional recurrence for the model, and then to
solve it using the kernel method [7, 8], and in particular the incarnation of this method as the
obstinate kernel method (see for example [13]).

A functional recurrence for the generating function g(Z; y1, y2) of the model in figure 6
is obtained by examining the number of ways each path can be extended by adding edges. A
factor of Z will be used to generate the special visit when both the free endpoints of the walks
are in the hard wall at Y = 0.

8
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Define yj = 1/yj for j = 1 or j = 2. Then ty1 is a north-east edge and ty1 is a south-east
step in the path on the left in figure 6, while sy2 is a north-west edge and sy2 is a south-west
step in the path on the right in figure 6.

The functional recurrence for g(Z; y1, y2) is obtained by appending one edge to each
of the two paths in figure 6. This gives the recurrence stated below, where I have included
comments to justify each set of terms. The letter ‘U’ represents a ‘north-east’ or ‘north-west’
(up)-step, and ‘D’ represents a ‘south-east’ or ‘south-west’ (down)-step in each case. In
addition, h1 is the height of the endpoint of the path on the left and h2 is the height of the
endpoint of the path on the right. The explanatory comments are in square brackets after each
term.

g(Z; y1, y2) = Z [The trivial pair]

+ g(Z; y1, y2)(tsy1y2) [UU for both paths]

+

(
g(Z; y1, y2) − g(Z, 0, y2) − g(Z; y1, 0) + g(Z; 0, 0)

− y1

[
∂g(Z; y1, y2)

∂y1

]
y1=0

− y2

[
∂g(Z; y1, y2)

∂y2

]
y2=0

+ y1y2

[
∂2g(Z; y1, y2)

∂y1y2

]
y1=0
y2=0

)
(tsy1y2 + tsy1y2 + tsy1y2)

[DD,UD,DU, for h1 > 1 and h2 > 1]

+ y1y2

[
∂2g(Z; y1, y2)

∂y1y2

]
y1=0
y2=0

(Ztsy1y2 + tsy1y2 + tsy1y2)

[DD,UD,DU, for h1 = 1 and h2 = 1]

+

(
y1

[
∂g(Z; y1, y2)

∂y1

]
y1=0

− y1y2

[
∂2g(Z; y1, y2)

∂y1y2

]
y1=0
y2=0

)

(tsy1y2 + tsy1y2 + tsy1y2) [DD,UD,DU, for h1 = 1 and h2 > 1]

+

(
y2

[
∂g(Z; y1, y2)

∂y2

]
y2=0

− y1y2

[
∂2g(Z; y1, y2)

∂y1y2

]
y1=0
y2=0

)

(tsy1y2 + tsy1y2 + tsy1y2) [DD,UD,DU, for h1 > 1 and h2 = 1]

+ (g(Z; y1, 0) − g(Z; 0, 0))(tsy1y2) [DU, for h1 > 0 and h2 = 0]

+ (g(Z; 0, y2) − g(Z; 0, 0))(tsy1y2) [UD, for h1 = 0 and h2 > 0].

Multiplying this by y1y2 and collecting terms give the simplified functional recurrence(
y1y2 − T

(
1 + y2

1

) (
1 + y2

2

))
g(Z; y1, y2) = y1y2Z + T

(
1 − y2

1y2
2

)
g(Z; 0, 0)

− T
(
1 + y2

1

)
g(Z; y1, 0) − T

(
1 + y2

2

)
g(Z; 0, y2)

+ Ty1y2(Z − 1)

[
∂2

∂y1 ∂y2
g(Z; y1, y2)

] ∣∣∣∣
y1=0
y2=0

+ Ty2
1y

2
2g(1; 0, 0) (24)

for the generating function. Proceed by substituting Z = 1 to get a recurrence for
g(y1, y2) ≡ g(1; y1, y2). Simplifying the resulting expression gives(
y1y2 − T

(
1 + y2

1

) (
1 + y2

2

))
g(y1, y2) = y1y2 + T g(0, 0)

− T
(
1 + y2

1

)
g(y1, 0) − T

(
1 + y2

2

)
g(0, y2). (25)

9
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The kernel in equation (25) is

K(y1, y2) = y1y2 − T
(
1 + y2

1

) (
1 + y2

2

)
, (26)

and observe that it is also the kernel of recurrence equation (14) of the model in section 2.
Equation (24) cannot be directly solved; for example, substituting y1 = 0 gives a tautology
for g(0, y2). However, note that if (Y1, Y2) is a pair such that K(Y1, Y2) = 0 in equation (25),
then expressions involving g(Y1, 0), g(0, Y2) and g(0, 0) can be obtained. Thus, proceed by
first examining the kernel K(y1, y2) before solving for g(y1, y2).

3.1. The kernel

Solving for g(y1, y2) in equation (25) by the kernel method proceeds by relating y2 and y1 such
that K(y1, y2) = 0. This ‘killing of the kernel’ gives relations involving g(y1, 0), g(0, y2) and
g(0, 0) from which a solution may be extracted.

Solving for y2 = Y±(y1) in K(y1, y2) = 0 in equation (26) gives pairs (y1, Y±(y1)) such
that K(y1, Y±(y1)) = 0. The roots are

Y±(X) = X ±
√

X2 − 4T 2(1 + X2)2

2T (1 + X2)
. (27)

Substitution of pairs (y1, y2) = (X, Y+(X)) or (y1, y2) = (X, Y−(X)) kills the kernel K(y1, y2)

in equation (25). However, these substitutions alone are not enough to determine g(y1, y2),
and other pairs (X, Y ) which kill the kernel must be generated.

Examination of the roots Y±(X) shows that Y+(X) is a Laurent series in T, and substitution
of a pair (X, Y+(X)) do not give a well-defined power series solution for the generating function.
The root Y−(X) is a formal power series in T, given by the Dyck Path generating function

Y−(X) =
∞∑

j=0

1

j + 1

(
2j

j

)
(X + 1/X)2j+1 T 2j+1, (28)

and pairs (X, Y−(X)) can be substituted to obtain a functional equation relating g(y1, 0),
g(0, y2) and g(0, 0). The root Y−(X) is the ‘physical root’, which gives a legitimate power
series counting a certain class of objects.

Direct calculations show that for non-negative values of X � 1,

Y− · Y+ = 1, Y− + Y+ = [X/(T (1 + X2))],

(Y− ◦ Y−)(X) = X, (Y− ◦ Y+)(X) = X,

(Y+ ◦ Y−)(X) = 1/X, (Y+ ◦ Y+)(X) = 1/X,

Y−(X) = Y−(1/X), Y+(X) = Y+(1/X).

(29)

In particular, if one defines the involutions (X, Y ) → (1/X, Y ) and (X, Y ) → (X, 1/Y ) in
view of the above, then direct calculation shows that K(X, Y ) = K(1/X, Y ) = K(X, 1/Y ) =
0.

Define Y2(y) ≡ Y−(y) to be the physical root. Then (X, Y ) = (y, Y2(y)) kills the kernel,
and the above shows that other possible kernel killing pairs related to Y2(y) are (1/y, Y2(y)),
(y, 1/Y2(y)) and (1/y, 1/Y2(y)). Since 1/Y2(y) = Y+(y) is a Laurent series in T, the only
appropriate choice amongst these is the pair (1/y, Y2(y)).

These choices give the two kernel killing pairs (y, Y2(y)) and (1/y, Y2(y)). Substitution
of these gives the two equations:

0 = yY2(y) + T g(0, 0) − T (1 + y2)g(y, 0) − T (1 + [Y2(y)]2)g(0, Y2(y)),

0 = (1/y)Y2(y) + T g(0, 0) − T (1 + 1/y2)g(1/y, 0) − T (1 + [Y2(1/y)]2)g(0, Y2(1/y)).
(30)

10
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Subtraction of these equations shows that

T (1 + y2)g(y, 0) − T (1 + 1/y2)g(1/y, 0) = (y − 1/y)Y2(y). (31)

This functional equation must be solved for g(y, 0) subject to the requirement that g(y, 0) is
a formal power series in y. Define H(y) = T (1 + y2)g(y, 0); then H(y) is a formal power
series in y and satisfies the functional equation

H(y) − H(1/y) = (y − 1/y)Y2(y), (32)

which is solved in the appendix (see equation (A.1)). The solution is however not unique, but
H(y) is a power series in y2, and if its constant term (independent of y) is stripped away, then
a solution is

H(y) = y2

T

(
1

4
− 1

2π
E(4T )

)

+ T (y2 − 1)

∞∑
j=1

j−1∑
k=0

1

j + 1

(
2j

j

)(
2j + 1

k

)
y2j−2kT 2j , (33)

where E(z) is a complete elliptic integral of the second kind.1 Thus, up to an unknown function
of T (and independent of y), T (1 + y2)g(y, 0) is given by the above, and it remains to extract
g(y, 0) from this result.

3.2. Determining g(y, 0)

Determining g(y, 0) from the result in equation (33) proceeds as follows. Observe that
g(y, 0) = g(0, 0) + y2 (times a function of y), so that one may assume that

g(y, 0) = g(0, 0) + y2g1(y) (34)

for some function g1(y). This assumption implies that g(1/y, 0) = g(0, 0) + y−2g1(1/y), and
since H(y) = T (1 + y2)g(y, 0) + f (T ) for some unknown function f (T ) independent of y,
it follows that

H(y) − H(1/y) = T (y2 − 1/y2)g(0, 0) + (T y2)(1 + y2)g1(y) − (T /y2)(1 + 1/y2)g1(1/y).

(35)

The positive power series in y of this is given by equation (33) and is also given by

H(y) = (T y2)g(0, 0) + (T y2)(1 + y2)g1(y)

= (T y2)g(0, 0) + T (1 + y2)(g(y, 0) − g(0, 0))

= T (1 + y2)g(y, 0) − T g(0, 0). (36)

In particular, in view of equation (33) this implies that

g1(y) = H(y) − Ty2g(0, 0)

T y2(1 + y2)
(37)

and the objective is to compute g(0, 0) + y2g1(y) = g(y, 0) given by

g(y, 0) = g(0, 0)

1 + y2
+

H(y)

T (1 + y2)
, (38)

where H(y) is explicitly given by H(y) in equation (33).

1 The complete elliptic integral of the first and second kinds are respectively defined by

K(z) =
∫ 1

0

[
1√

1 − z2t2
√

1 − t2

]
dt; E(z) =

∫ 1

0

[√
1 − z2t2

√
1 − t2

]
dt.

The radius of convergence of both E(z) and K(z) is |z| = 1.

11
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3.3. Determining g(Z; y1, y2)

The solution for g(y, 0) gives a solution for the full generating function g(1; y1, y2) ≡
g(y1, y2). By equation (25) it follows that

g(y1, y2) = y1y2 + T g(0, 0) − T
(
1 + y2

1

)
g(y1, 0) − T

(
1 + y2

2

)
g(0, y2)

y1y2 − T
(
1 + y2

1

)(
1 + y2

2

) , (39)

and observe that g(y, 0) = g(0, y) by reflection symmetry of the model. Then substituting
g(y, 0) into this from equation (38) shows that

g(y1, y2) = y1y2 − T (g(0, 0) + H(y1) + H(y2))

y1y2 − T
(
1 + y2

1

)(
1 + y2

2

) . (40)

Since g(Z; y1, y2) = (Z − 1)g(0, 0) + g(1; y1, y2), it follows that

g(Z; y1, y2) = (Z − 1)g(0, 0) +
y1y2 − T (g(0, 0) + H(y1) + H(y2))

y1y2 − T
(
1 + y2

1

)(
1 + y2

2

) . (41)

This gives a solution for g(Z; y1, y2) subject to the determination of g(0, 0). Examination
of the above indicate that g(0, 0) ≡ g(1; 0, 0) is the term independent of (y1, y2) on the
right-hand side of equation (40).

3.4. Extracting the constant term

Extracting the constant term in expressions such as equation (40) is necessary to determine the
full generating function. In general, I will be concerned with y1 = ef/2y and y2 = ef/2/y, and
then I shall extract the constant term (that term independent of y) in the generating function
g(ef/2y, ef/2/y). The effect of this would be to force paths in figure 6 to end at the same
height, and thus the constant term in g(ef/2y, ef/2/y) is the generating function of the model
in figure 2.

Consider equation (40), and in particular the denominator on the right-hand side (this is
the kernel examined above). Substituting y1 = ef/2y and y2 = ef/2/y then gives it as

1

ef − T (1 + ef y2)(1 + ef /y2)
= y2

ef y2 − T (1 + ef y2)(y2 + ef )

= y2

−ef T (y2 − α1)(y2 − α2)
, (42)

where the roots of the denominator is given by

α1 = 1 − 2T cosh(f ) +
√

4T 2 sinh2(f ) − 4T cosh(f ) + 1

2T
,

(43)

α2 = 1 − 2T cosh(f ) −
√

4T 2 sinh2(f ) − 4T cosh(f ) + 1

2T
,

and observe that α1α2 = 1. Observe that the radical in these roots are equal to 1/g0(t; f ) in
equation (21), where g0(t; f ) is the generating function of the model of directed paths pulled
in the middle determined in section 2, and is related to the generating function of Legendre
polynomials.

Hence, equation (40) can be written as

g(ef/2y, ef/2/y) = e−f y2(T [g(0, 0) + H(ef/2y) + H(ef/2/y)] − ef )

T (y2 − α1)(y2 − α2)
. (44)

12
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Thence, the generating function of the model in figure 2 is obtained by selecting the constant
term in the above:

G(1; f ) = CT[g(ef/2y, ef/2/y)]. (45)

Now H(ef/2y) is a power series in y2—so define F0(y) ≡ H(ef/2y) and F1(y) = H(ef/2/y).
Then the constant term can be determined as follows:

G(1, f ) = CT

[
y2(e−f T [g(0, 0) + F0(y) + F1(y)] − 1)

T (y2 − α1)(y2 − α2)

]

=
∮

C

[
y2(e−f T [g(0, 0) + F0(y) + F1(y)] − 1)

T (y2 − α1)(y2 − α2)

]
dy

y
, (46)

where C is a circle in the (complex) y-plane centred at the origin with a small radius. Observe
that F0(y) is analytic in a small disc about the origin in the y-plane (and for small values of T
is an entire function), while F1(y) is singular at the origin (but is analytic in the y-plane with a
small disc excised about the origin). Note in particular as well that F0(y) = F0(−y) and that
F1(y) ∼ y−2 + O(y−4).

The constant term can be determined by using the residue theorem and noting that there are
simple poles when y = ±√

α1 and y = ±√
α2. The residue of the term in y(e−f T g(0, 0)−1)

is zero, as is the residue of ye−f T F0(y). This leaves only the term in F1(y). Direct calculation
shows that

G(1; f ) = F0(
√

α1) − F0(
√

α2)

ef T (α1 − α2)
, (47)

where it was noted that F1(y) = F0(1/y) and α1α2 = 1. The function F0(y) is explicitly
given by

F0(y) = ef y2

T

(
1

4
− 1

2π
E(4T )

)

+ T (ef y2 − 1)

∞∑
j=1

j−1∑
k=0

1

j + 1

(
2j

j

)(
2j + 1

k

)
(ef y2)j−kT 2j . (48)

Further examination of equation (47) shows that

G(1; f ) = F0(
√

α1) − F0(
√

1/α1)

ef T (α1 − 1/α1)
= F0(

√
α2) − F0(

√
1/α2)

ef T (α2 − 1/α2)
. (49)

In other words, G(1; f ) is invariant under the exchange α1 ↔ α2. This in particular proves
the claims in theorem 1 and following equation (8). Expanding G(1; f ) as a power series in
T also shows that

G(1; f ) = 1 + ef T + (1 + e2f )T 2 + (4ef + e3f )T 3 + (4 + 9e2f + e4f )T 4 + O(T 5). (50)

That is, G(1, f ) is a formal power series in T with coefficients which are polynomials in ef

with non-negative coefficients.

3.5. Determining g(0, 0)

Next, the generating function g(0, 0) can be determined. While this generating function played
a role in our analysis, it disappeared when the constant term was taken, but it is still present as
a limit in our result in equation (47).

The starting point is to note that limf →−∞[e−f α1] = −1 and limf →−∞[ef α2] = −1.
In other words, to leading orders α1 = −ef + · · · and α2 = −e−f + · · ·, and taking the

13
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Figure 7. Two pulled Dyck paths with middle vertices at heights h and k can be arranged into a
new Dyck path with a middle vertex at height h + k by cutting the first path in its middle vertex,
moving the two subpaths apart and then putting the second path in the gap between the two paths
with its endpoints coincident with the endpoints of the two subpaths as illustrated.

limit f → −∞ in equation (47), one obtains (by noting that ef → 0 (and so α1 → 0) as
f → −∞),

g(0, 0) = F0(i e−f/2)

−T
. (51)

Substitution and evaluation then gives g(0, 0) in terms of complete elliptic integrals E(z) (of
the second kind) and K(z) (of the first kind):

g(0, 0) = E(4T )

T 2π
− (1 − 16T 2)K(4T )

2T 2π
− 1

4T 2
. (52)

This in particular shows that the generating function of squared Catalan numbers is
∞∑

j=0

[
1

j + 1

(
2j

j

)]2

T 2j = E(4T )

T 2π
− (1 − 16T 2)K(4T )

2T 2π
− 1

4T 2
, (53)

and thence theorem 2 is proven. This result also gives the complete generating function
G(Z; f ); by consulting equation (41):

G(Z; f ) = (Z − 1)

(
E(4T )

T 2π
− (1 − 16T 2)K(4T )

2T 2π
− 1

4T 2

)
+

[
F0(

√
α1) − F0(

√
1/α1)

ef T (α1 − 1/α1)

]
,

(54)

with α1, α2 and F0(y) as defined above.

3.6. Discussion

Consider first the model with Z = 1 and generating function G(1; f ). If the number of Dyck
paths with a midpoint at height h and total (even) length n is given by cn(h), then it follows
that the partition function Zn(f ) for paths of length n is

Zn(f ) =
n/2∑
h=0

cn(h) ehf . (55)

Paths of lengths n and m can be put together into paths of length n + m by cutting the paths of
length n in their midpoint, moving them apart, and then inserting the paths of length m in the
resulting gap. This is illustrated in figure 7.
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This construction shows that
k∑

h=0

cn(h)cm(k − h) � cn+m(k). (56)

Multiply this by ek and sum over k. The result is

Zn(f )Zm(f ) � Zn+m(f ). (57)

In other words, Zn(f ) is a supermultiplicative function on n for each fixed f . Since
Zn(f ) � max{2n, 2n ef n} for all finite values of f , this implies that the limiting free energy
of the model exists and is given by

F(f ) = lim
n→∞

1

n
log Zn(f ) (58)

by a theorem on subadditive functions [18].
The generating function G(1; f ) is related to the partition function by

G(1; f ) =
∞∑

n=0

Z2n(f )T n, (59)

where the sum is over all paths of even length and t2 = T , where t is conjugate to the length
of the path. The root test for convergence of this series then show, by using equation (58), that
the radius of convergence of G(1; f ), given by tc(f ), is related to the limiting free energy by

F(f ) = −(1/2) log Tc(f ) = −log tc(f ), (60)

where Tc(f ) is the radius of convergence of G(1; f ) in the T-plane. Observe, in particular,
that by existence of the limit in equation (58), that the thermodynamic limit in this model is
well defined and that information about it can be obtained by examining the singularities in
the generating function G(1; f ).

The generating function G(1; f ) is a power series in T with coefficients which are
polynomials in ef with positive integer coefficients. Thus, G(1; f ) is a non-decreasing
function of real f and T > 0. Observe that if G(1; 0) is absolutely convergent, then so is
G(1;−|f |).

There are several sources of singularities in the generating function G(Z; f ). Both the
complete elliptic integrals are singular when T = 1/4 while there are branch point singularities
in α1 and α2. Next, the series in F0(y) (see equation (48)) is divergent if |T | is large, and so
one must determine its radius of convergence.

The radius of convergence of G(1; f ) in the T-plane can be determined as follows if
f � 0: the number of paths with north-east and south-east steps from the origin in the square
lattice of even length 2j with (both) endpoints in the X-axis is given by

( 4j

2j

)
. Thus, it follows

that

G(1;−|f |) � G(1; 0) �
∞∑

j=0

(
4j

2j

)
T 2j . (61)

On the other hand, if f → −∞, then the midpoint of the path is also constrained to lie in the
X-axis. Thus,

∞∑
j=0

[
1

j + 1

(
2j

j

)]2

T 2j = G(1;−∞) � G(1;−|f |). (62)

Using Stirling’s approximation for the binomial factors in the last two sets of inequalities show
that the radius of convergence G(1,−|f |) in the T-plane is Tc = 1/4.
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Examination of G(Z; f ) for f � 0 (see equation (54)) and arbitrary Z shows a singularity
due to the elliptic integral at Tc = 1/4, and one concludes that for all f � 0 the generating
function G(Z; f ) has a radius of convergence Tc = 1/4. (This is in particular true since it can
be shown directly that terms in equation (48) containing the infinite series on the one hand,
and the terms containing the elliptic integrals on the other hand, are generally not equal for
f � 0).

Consider next the case that f > 0: instead of considering the function F0(y) to determine
the radius of convergence, observe first that G(1; f ) is given explicitly in terms of the number
of ballot paths2 by

G(1; f ) =
∞∑

j=0

(�j/2�∑
h=0

[
2h + 1 + δj

j + 1

(
j + 1

�j/2� − h

)]2

e(2h+δj )f

)
T j , (63)

where the parity term δj = 0 if j is even and δj = 1 if j is odd (that is, δj = j − 2�j/2�).
The maximum rate of exponential growth of the terms in the summations over h in

equation (63) can be determined by putting h = �εj� (where ε ∈ (0, 1/2)) in the binomial
factors

(
j+1

�j/2�−h

)
and using Stirling’s approximation for the factorials. This shows in particular

that

max
ε∈[0,1)

⎧⎨
⎩ lim

j→∞

([
2�εj� + 1

j + 1

(
j + 1

�j/2� − �εj�
)]2

e(2�εj�)f
)1/j

⎫⎬
⎭ = (1 + ef )(1 + e−f ), (64)

where the maximum is found if ε = [tanh(f/2)]/2 ∈ (0, 1/2) as required. Thus, by the root
test it follows that the radius of convergence of G(1; f ) in the above is

T0 =
⎧⎨
⎩

4, if f � 0;
1

(1 + ef )(1 + e−f )
, if f > 0.

(65)

Thus, the limiting free energy per edge in this model, if one puts the edge generating variables
s = t so that T = t2, is given by

F(f ) =
{

log 2, if f < 0;
log [2 cosh(f/2)] , if f � 0.

(66)

This shows that the force–extension curve (obtained by taking the derivative of F(f ) to f ) is
given by 〈h〉 = [tanh(f/2)]/2 if f > 0 and 〈h〉 = 0 for f � 0, as claimed in the introduction.
This proves a phase transition in this model at f = 0 to a ballistic phase for f > 0, this
concludes the proofs of the claims made in the introduction.

Next, examine the generating function G(1; f ) as given in terms of the roots α1, α2 and
the function F0(y) as defined in equation (48). Since G(1; f ) is given both by equation (49)
and by equation (63), one expects that

F0(
√

α1) − F0(
√

1/α1)

ef T (α1 − 1/α1)
=

∞∑
j=0

(�j/2�∑
h=0

[
2h + 1 + δj

j + 1

(
j + 1

�j/2� − h

)]2

e(2h+δj )f

)
T j , (67)

where δj = j − 2�j/2� is a parity term. This identity is true within the radius of convergence
of the series on the left-hand and right-hand sides in the T-plane for given fixed finite real
values of f . Above it was shown that the radius of convergence of the right-hand side is given
by T0 in equation (65).

To determine the radius of convergence of the left-hand side of equation (67), consider
the factors

( 2j+1
k

)
(ef y2)j−k in the definition of F0 in equation (48) (for k ∈ [0, j −1]). Putting

2 This approach was suggested by an anonymous referee.
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k = �εj� for ε ∈ [0, 1) and approximating the factorials using Stirling’s approximation and
maximizing with respect to ε shows that the maximum rate of exponential growth in the
summation over k is achieved when ε = 2/(1 + ef y2) in the limit j → ∞. Observe that this
value of ε is in [0, 1) when ef y2 > 1, and substituting this shows that the maximum rate of
exponential growth of the terms

( 2j+1
k

)
(ef y2)j−k in equation (48) in the j → ∞ limit is

max
ε∈[0,1)

{
lim

j→∞

[(
2j + 1

�εj�
)

(ef y2)j−�εj�
]1/j

}
=

⎧⎪⎨
⎪⎩

4, if ef y2 � 1;
ef y2

(1 + ef y2)2
, if ef y2 > 1.

(68)

This result shows that the radius of convergence of F0(y) in the T-plane (by using the root
test) is determined by the implicit equations for T:

T 2 =

⎧⎪⎪⎨
⎪⎪⎩

1

16
, if 0 � ef y2 � 1;

1

4(1 + ef y2)(1 + e−f y−2)
, if ef y2 > 1.

(69)

In view of equations (49) and (54) one has either y2 = α1 or y2 = α2 with these given in
equation (43). Substitution for α1 and α2 and solving for T gives the radius of convergence of
the terms F0(

√
α1) and F0(

√
1/α1). Let T1 be these radii; then direct calculation shows that

T1 =

⎧⎪⎪⎨
⎪⎪⎩

1

4
, if f � 0;

ef

2(1 + e2f )
, if f > 0.

(70)

There are further singularities in F0(
√

α1) and F0(
√

1/α1) due to branch points in α1 and α2.
These branch points are located in the T-plane at the solutions of 4T 2 sinh2(f )−4T cosh(f )+
1 = 0 and gives the critical points

T± = ef

(1 ± ef )2
. (71)

Lastly, singular behaviour may also occur if α1 = α2; solving for T shows that this critical
point is at T = T±. Observe the relationship

1

T1
= 1

T+
+

1

T−
for f � 0, (72)

relating T1 and T±.
Taken together, the radius of convergence of the generating function (F0(

√
α1) −

F0(
√

1/α1))/(ef T (α1 −1/α1)) is at the minimum of T1 and T ±, and one can verify that this is
at T = T1. Observe in particular that T1 < T0 when f > 0, so that the radius of convergence
of the left-hand side of equation (67) is strictly less than the radius of convergence of the series
on the right-hand side in the T-plane. In view of equations (58) and (60) the conclusion is
that the critical point in this model is given by T0 and that the singularity in F0(

√
α1) at T1 for

f � 0 is unphysical.
One may check the above results numerically. In table 1, I give numerical results obtained

by summing the first 1000 terms in each series for the left-hand side and right-hand side of
equation (67) with f = 2 and for values of T in [0, T1]. These results agree to many digits,
and only on approach to T1 does one see a deterioration in the quality of the estimates obtained
from the left-hand side as the singular point in F0(

√
α1) is approached. For values of T > T1

one may still attempt to compute both sides, for example, if T = 1.1T1, then the left-hand
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Figure 8. A plot of α1ef T 2(1 + α2e−f )2 (the top curve) and α2ef T 2(1 + α1e−f )2 (the
bottom curve) for f = 2 against T. The maximum in the top curve is achieved when
T = T1 = e2/(2(1 + e4)) = 0.066 450 55 . . . (see equation (70)). This curve increases to touch
its maximum 1/4 exactly at this point, and the function F0(

√
α1) has the radius of convergence

T = T1. For values of T > T1 the identity in equation (67) breaks down, even though its right-hand
side is still convergent while T < T0 = (1 + e2)(1 + e−2).

Table 1. Numerical estimates of the lhs and rhs of equation (67).

T 0.5T1 0.75T1 0.8T1 0.85T1 0.9T1 0.95T1 0.975T1 T1

lhs 1.328 61 1.596 74 1.665 05 1.740 04 1.822 86 1.914 61 1.959 43 –
rhs 1.328 61 1.596 74 1.665 05 1.740 04 1.822 86 1.915 18 1.965 25 2.018 36

side gives 1.831 93 . . . while the right-hand side converges to 2.267 92 . . .. In other words, the
identity in equation (67) breaks down when T ∈ (T1, T0).

An alternative approach to the above is to note that the root test for convergence shows that
F0(

√
α1) and F0(

√
1/α1) in equation (48) are convergent when α1 ef T 2(1 + α2 e−f )2 < 1/4

and α2 ef T 2(1+α1 e−f )2 < 1/4 respectively. The maximum in the curve α1 ef T 2(1+α2 e−f )2

is given by T = T1 at which point it has the value 1/4. Since F0(
√

α1) is divergent
if α1 ef T 2(1 + α2 e−f )2 > 1/4 this is a singular point in the T-plane. The curve
α1 ef T 2(1 + α2 e−f )2 decreases for T ∈ (T1, T0) and has another singular point when T = T0

due to the branch point in αj . This curve is displayed as the top curve in figure 8. The bottom
curve in this figure is given by α2ef T 2(1 + α2e−f )2 and is increasing for T ∈ [0, T0] and has
a singular point for T = T0 due to the branch point in αj . These results show in particular
that F0(

√
α1) has a radius of convergence given by T = T1 while F0(

√
1/α1) has the radius

of convergence given by T = T0.

4. Conclusions

In this paper, I considered two models of directed paths with fixed endpoints pulled by an
external force from its middle vertex. These models differ from those in [1] in that the position
of the applied force is fixed, rather than averaged over the length of the path.

I computed the generating functions in the first instance of a directed path fixed at its
ends and pulled at its middle vertex using a constant term formulation as an example of the
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method, and then considered a Dyck path with fixed endpoints pulled at its middle vertex. The
generating functions of these models are in principle known, and can be computed directly
from the expressions in equation (4.156) in [19] or equation (2.1) in [21], or using ballots
paths, and in those cases evaluate to series over generalized hypergeometric functions about
which apparently little is known. The approach in this paper expressed the generating function
of the directed path models in terms of the generating function of Legendre polynomials, and
the Dyck path model as a function of complete elliptic integrals and a series over the algebraic
roots of a quartic.

The generating function of the Dyck path pulled at its middle vertex was found to have
a radius of convergence at an unexpected value of the edge generating variable T, and the
reason for this remains unclear—in this context, the identity in equation (67) breaks down at
the radius of convergence of the left-hand side, which is not equal to the radius of convergence
of the right-hand side. This result indicates that some caution is needed when limiting free
energies are determined by considering the radius of convergence of a generating function.

The limiting free energies and force–extension relations in both models were also extracted
from generating functions, and in each case were expressed as the logarithms of hyperbolic
cosines of the applied forces. The resulting force–extension relations are the expected sigmoid
shapes (given in these models partly by the hyperbolic tangent function) also seen for example
in [1, 26]. In addition, proofs for the combinatorial identities in equation 4 and theorem 2
were obtained.

The method in this paper is a demonstration that the generating functions of paths pulled
at a middle vertex can be obtained by considering two independent paths, and then selecting
a constant term. This general approach can be extended to other paths models, including
other variations on the point where the force is applied, and even to interacting models of
directed paths, or to more general models of interacting directed and partially directed paths.
In many of these cases a direct approach may not be otherwise possible. In general, such
further generalization to path models pulled at a middle vertex, pose questions of significant
difficulty. Determining the generating functions in interacting versions of these models are
ongoing and should produce insight into the phase diagram and phase behaviours of adsorbing
polymers subject to externally applied forces.
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Appendix. Solving a functional equation

In this section I consider a functional equation of the type

H(y) − H(1/y) = (y − 1/y)Y2(y), (A.1)

where H(y) is a power series in y and Y2(y) is a Laurent series in y given by

Y2(y) =
∞∑

j=0

1

j + 1

(
2j

j

)
(y + 1/y)2j+1T 2j+1. (A.2)

The goal is to solve for H(y).
Proceed by noting that for arbitrary fixed N,

(y + 1/y)N =
N∑

k=0

(
N

k

)
yN−2k. (A.3)
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Putting N = 2j + 1 and substituting this into equation (A.2) gives the series

Y2(y) =
∞∑

j=0

2j+1∑
k=0

1

j + 1

(
2j

j

)(
2j + 1

k

)
y2j+1−2kT 2j+1. (A.4)

Since H(y) is a power series, it follows that H(y) − H(1/y) is a Laurent series without a
constant term (it cancels in the subtraction). In other words, one is interested in the positive
powers of y in the series for (y−1/y)Y2(y) in equation (A.4). This will truncate the summation
over k at some maximum value.

Next, split the series in equation (A.4) into two parts (over (y − 1/y)) to obtain

(y − 1/y)Y2(y) =
∞∑

j=0

2j+1∑
k=0

1

j + 1

(
2j

j

)(
2j + 1

k

)
y2j+2−2kT 2j+1

−
∞∑

j=0

2j+1∑
k=0

1

j + 1

(
2j

j

)(
2j + 1

k

)
y2j−2kT 2j+1. (A.5)

Observe that positive powers of y are isolated by truncating the first series at k = j and the
second series at k = j − 1. In these circumstances, the first series is equal to its k = j term
plus y2 times the second series. In other words, H(y) is given, up to an unknown term f (T )

independent of y, by

H(y) − f (T ) = y2
∞∑

j=0

1

j + 1

(
2j

j

)(
2j + 1

j

)
T 2j+1

+ (y2 − 1)

∞∑
j=1

j−1∑
k=0

1

j + 1

(
2j

j

)(
2j + 1

k

)
y2j−2kT 2j+1. (A.6)

The first series evaluates to a complete elliptic integral of the second kind E(z) defined by

E(z) =
∫ 1

0

√
1 − z2x2

√
1 − x2

dx, (A.7)

so that

H(y) = f (T ) +
y2

T

(
1

4
− 1

2π
E(4T )

)

+ T (y2 − 1)

∞∑
j=1

j−1∑
k=0

1

j + 1

(
2j

j

)(
2j + 1

k

)
y2j−2kT 2j . (A.8)

This completes the proof of equation (33).
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